Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

catena-Poly[[triphenyltin(IV)]- μ hydroxo- κ^2 O:O] at 120 K

Christopher Glidewell,^a* John N. Low,^b† João A. S. Bomfim,^c Carlos A. L. Filgueiras^c and James L. Wardell^c

^aSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland, ^bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and ^cInstituto de Química, Departamento de Química Inorgànica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil

Correspondence e-mail: cg@st-andrews.ac.uk

Received 24 January 2002 Accepted 28 January 2002 Online 12 March 2002

The structure of the title compound, $[Sn(C_6H_5)_3(OH)]_n$, has been re-investigated at 120 (2) K. The hydroxyl H atom was readily located and the threefold coordination about the O atom is planar. There are no hydrogen bonds involving the hydroxyl group, either as donor or as acceptor.

Comment

The structure of the title compound, (I), was reported many years ago (Glidewell & Liles, 1978), but the data set employed (293 K, 1767 reflections uncorrected for absorption) did not permit either the anisotropic refinement of the C atoms or the location of the H atoms, although H atoms bonded to C atoms were included in the final refinement in calculated positions. Crucially, however, it was not possible at the time to identify the H atom of the hydroxyl group, and hence it was not possible either to assess whether the coordination about the O atom was planar or pyramidal, or to analyse whether there are significant hydrogen bonds within the structure.

By use of a larger low-temperature data set collected using a CCD diffractometer (120 K, 3376 reflections corrected for absorption, of which 3120 are labelled observed), it has been possible not only to refine all non-H atoms anisotropically, but to locate all of the H atoms from difference maps, including that bonded to the O atom. The cell dimensions and space group, and the general structural features, with planar Ph₃Sn groups and OH units alternating in chains generated by a 2_1 axis in $P2_12_12_1$, show there is no change of phase between 293 and 120 K.

In the original structure analysis, the overall precision was rather modest [$\sigma(Sn-O)$ 0.005 Å, $\sigma(Sn-C)$ 0.008 Å and $\sigma(C-C)$ 0.01–0.02 Å]. The present refinement has reduced these σ values to 0.0017, 0.003 and 0.004–0.005 Å, respectively. Although the bond angles in the SnC_3O_2 core unit indicate almost ideal trigonal-bipyramidal geometry, with axial O and equatorial C atoms, as expected, the two independent Sn-O distances nonetheless differ by ca 0.07 Å (Table 1). Similarly, although the three independent Sn-C distances are almost identical, the conformation of the Ph₃Sn fragment is very far from the idealized C_3 local symmetry, as demonstrated by the O-Sn-C-C torsion angles. The unique Sn-O-Sn angle is very large, and the hydroxyl H atom is located very close to the plane defined by the Sn-O-Snⁱ fragment [symmetry code: (i) $x - \frac{1}{2}, \frac{1}{2} - y, -z$, with the sum of the bond angles at O being almost 360°.

It is striking that the hydroxyl group in (I) does not participate in any hydrogen bonds, either with the O atom as hydrogen-bond donor to another O atom or to an aryl group, or with the O atom as acceptor from either O or C atoms. The disposition of the zigzag chains is, in fact, such that the only C or O atoms within 3.50 Å of O1 at (x, y, z) are those within the same chain, and all are *ipso*- or *ortho*-C atoms in the two Ph₃Sn units bonded to O1. Table 2 lists the shortest intra-chain non-bonding contacts involving the O atom as a potential hydrogen-bond donor and as an acceptor, and the contacts with both the shortest H···O and the shortest C···O distances are shown. These data, particularly the $D-H\cdots A$ angles, demonstrate that, even within a given chain, the hydroxyl group acts neither as a donor nor as an acceptor of hydrogen bonds.

Figure 1

A view of the molecular structure of (I), showing the coordination around Sn and the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii [symmetry code: (i) $\frac{1}{2} + x$, $\frac{1}{2} - y$, -z].

[†] Postal address: School of Engineering, University of Dundee, Dundee DD1 4HN, Scotland.

metal-organic compounds

It is interesting to note that, in all compounds of type Ph_3MOH , for M = C, Si, Ge, Sn or Pb, the location of the hydroxyl H atom has hitherto proved troublesome. When M =C, the molecules form tetrahedral tetramers, but the hydroxyl H atoms could not be located from ambient-temperature X-ray data (Ferguson, Gallagher, Glidewell et al., 1992). These H atoms are, in fact, mobile over a number of sites at ambient temperature (Aliev et al., 1998), and neutron diffraction at 100 K was required to locate these H-atom sites unambiguously (Serrano-González et al., 1999). The compounds Ph₃SiOH (Puff et al., 1991) and Ph₃GeOH (Ferguson, Gallagher, Murphy et al., 1992) are isostructural, both forming cyclic tetramers with S_4 ($\overline{4}$) symmetry. In neither structure was the site of the hydroxyl H atom identified. Ph₃PbOH is isostructural with Ph₃SnOH (Glidewell & Liles, 1978) and, again, the hydroxyl H atom could not be located. The structure analyses for M = Si, Ge and Pb were all based on ambient-temperature data. The success of the present analysis for M = Sn indicates that re-investigation of the analogous Ph₃MOH structures using low-temperature CCD data should readily reveal the hydroxyl H atom when M = Si or Ge, although when M = Pbthis task may be more taxing.

Figure 2

Part of the crystal structure of (I), showing the formation of a zigzag chain generated by the 2₁ axis along $(x, \frac{1}{4}, 0)$. Atoms marked with an asterisk (*) or hash (#) are at the symmetry positions $(\frac{1}{2} + x, \frac{1}{2} - y, -z)$ and $(x - \frac{1}{2}, \frac{1}{2} - y, -z)$ -z), respectively.

Experimental

A sample of compound (I) was prepared by hydrolysis of triphenyltin(IV) azide in an ethanol-water mixture (97:3 v/v). Crystals of (I) suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in ethanol.

Crystal data

 $[Sn(C_6H_5)_3(OH)]$ $M_r = 367.00$ Orthorhombic, P212121 a = 8.2573(2) Å b = 10.2229 (2) Åc = 17.6996(5) Å V = 1494.09 (6) Å² Z = 4 $D_x = 1.632 \text{ Mg m}^{-3}$

Data collection

Nonius KappaCCD area-detector diffractometer φ scans, and ω scans with κ offsets Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) $T_{\min} = 0.554, T_{\max} = 0.712$ 10 366 measured reflections

Refinement

$w = 1/[\sigma^2(F_o^2) + (0.0221P)^2]$
+ 1.0158P]
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.68 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -1.06 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983)
Flack parameter = $-0.01(3)$

Mo $K\alpha$ radiation

reflections

 $\mu=1.70~\mathrm{mm^{-1}}$

T = 120 (2) K

 $R_{\rm int}=0.062$

 $\theta_{\rm max} = 27.5^{\circ}$ $h = -9 \rightarrow 10$

 $k = -13 \rightarrow 11$

 $l = -18 \rightarrow 22$

Block, colourless

 $0.40\,\times\,0.22\,\times\,0.20$ mm

1968 independent reflections (plus

3120 reflections with $I > 2\sigma(I)$

1408 Friedel-related reflections)

 $\theta = 3.0-27.5^{\circ}$

Cell parameters from 3376

Table 1

Selected geometric parameters (Å, °).

Sn1-C11 Sn1-C21 Sn1-C31	2.133 (3) 2.125 (3) 2.126 (3)	Sn1-O1 $Sn1-O1^{i}$	2.1797 (17) 2.2500 (17)
$O1-Sn1-O1^{i}$ $Sn1-O1-Sn1^{ii}$ Sn1-O1-H1 $Sn1^{ii}-O1-H1$ C11-Sn1-C21 C21-Sn1-C31 C31-Sn1-C11	176.842 (12) 137.66 (10) 106 115 116.84 (11) 120.24 (11) 122.51 (11)	$\begin{array}{c} C11-Sn1-O1\\ C21-Sn1-O1\\ C31-Sn1-O1\\ C11-Sn1-O1^{i}\\ C21-Sn1-O1^{i}\\ C31-Sn1-O1^{i}\\ \end{array}$	92.79 (10) 93.29 (9) 90.36 (8) 90.36 (9) 85.43 (9) 87.81 (8)
O1-Sn1-C11-C12 O1-Sn1-C21-C22 O1-Sn1-C31-C32	147.0 (2) 78.8 (2) 45.2 (2)	$\begin{array}{c} O1^{i} - Sn1 - C11 - C12 \\ O1^{i} - Sn1 - C21 - C22 \\ O1^{i} - Sn1 - C31 - C32 \end{array}$	-33.1 (2) -98.3 (2) -137.3 (2)

Symmetry codes: (i) $\frac{1}{2} + x$, $\frac{1}{2} - y$, -z; (ii) $x - \frac{1}{2}, \frac{1}{2} - y$, -z.

Table 2		
Short intra-chain non-bonded contacts	(Å, '	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D1 - H1 \cdots C32$ $C12 - H12 \cdots O1^{i}$ $C36 - H36 \cdots O1^{i}$	0.90 0.95 0.95	2.75 2.69 2.71	3.289 (4) 3.178 (4) 3.134 (4)	120 113 108

Symmetry code: (i) $\frac{1}{2} + x, \frac{1}{2} - y, -z$.

Compound (I) crystallized in the orthorhombic system; space group $P2_12_12_1$ was uniquely assigned from the systematic absences. All H atoms were located from difference maps. H atoms bonded to C atoms were treated as riding, with C-H = 0.95 Å. The H atom attached to the hydroxyl O atom was allowed to ride at the position found in the difference map.

Data collection: *KappaCCD Server Software* (Nonius, 1997); cell refinement: *DENZO–SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO–SMN*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2002); software used to prepare material for publication: *SHELXL*97 and *PRPKAPPA* (Ferguson, 1999).

The X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. The authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work. JASB, CALF and JLW thank CNPq, FUBJ and FAPERJ for financial support.

References

- Aliev, A., MacLean, E. J., Harris, K. D. M., Kariuki, B. M. & Glidewell, C. (1998). J. Phys. Chem. B, 102, 2165–2175.
- Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
- Ferguson, G., Gallagher, J. F., Glidewell, C., Low, J. N. & Scrimgeour, S. N. (1992). Acta Cryst. C48, 1272–1275.
- Ferguson, G., Gallagher, J. F., Murphy, D., Spalding, T. R., Glidewell, C. & Holden, H. D. (1992). Acta Cryst. C48, 1228–1231.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Glidewell, C. & Liles, D. C. (1978). Acta Cryst. B34, 129-134.
- Nonius (1997). *KappaCCD Server Software*. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Puff, H., Braun, K. & Reuter, H. (1991). J. Organomet. Chem. 409, 119-129.
- Serrano-González, H., Harris, K. D. M., Wilson, C. C., Aliev, A. E., Kitchin, S. J., Kariuki, B. M., Bach-Vergés, M., Glidewell, C., MacLean, E. J. & Kagunya, W. W. (1999). J. Phys. Chem. B, 103, 6215–6223.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Spek, A. L. (2002). *PLATON*. Version of January 2002. University of Utrecht, The Netherlands.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1536). Services for accessing these data are described at the back of the journal.